Cloud Resource Allocation
```mediawiki
Technical Deep Dive: The Template:PageHeader Server Configuration
This document provides a comprehensive technical analysis of the Template:PageHeader server configuration, a standardized platform designed for high-density, scalable enterprise workloads. This configuration is optimized around a balance of core count, memory bandwidth, and I/O throughput, making it a versatile workhorse in modern data centers.
1. Hardware Specifications
The Template:PageHeader configuration adheres to a strict bill of materials (BOM) to ensure predictable performance and simplified lifecycle management across the enterprise infrastructure. This platform utilizes a dual-socket architecture based on the latest generation of high-core-count processors, paired with high-speed DDR5 memory modules.
1.1. Processor (CPU) Details
The core processing power is derived from two identical CPUs, selected for their high Instructions Per Cycle (IPC) rating and substantial L3 cache size.
Parameter | Specification | |
---|---|---|
CPU Model Family | Intel Xeon Scalable (Sapphire Rapids Generation, or equivalent AMD EPYC Genoa) | |
Quantity | 2 Sockets | |
Core Count per CPU | 56 Cores (Total 112 Physical Cores) | |
Thread Count per CPU | 112 Threads (HyperThreading/SMT Enabled) | |
Base Clock Frequency | 2.4 GHz | |
Max Turbo Frequency (Single Thread) | Up to 3.8 GHz | |
L3 Cache Size (Total) | 112 MB per CPU (224 MB Total) | |
TDP (Thermal Design Power) | 250W per CPU (Nominal) | |
Socket Interconnect | UPI (Ultra Path Interconnect) or Infinity Fabric Link |
The selection of CPUs with high core counts is critical for virtualization density and parallel processing tasks, as detailed in Virtualization Best Practices. The large L3 cache minimizes latency when accessing main memory, which is crucial for database operations and in-memory caching layers.
1.2. Memory (RAM) Subsystem
The memory configuration is optimized for high bandwidth and capacity, supporting the substantial I/O demands of the dual-socket configuration.
Parameter | Specification |
---|---|
Type | DDR5 ECC Registered DIMM (RDIMM) |
Speed | 4800 MT/s (or faster, dependent on motherboard chipset support) |
Total Capacity | 1024 GB (1 TB) |
Module Configuration | 8 x 128 GB DIMMs (Populating 8 memory channels per CPU, 16 total DIMMs) |
Memory Channel Utilization | 8 Channels per CPU (Optimal for performance scaling) |
Error Correction | On-Die ECC and Full ECC Support |
Achieving optimal memory performance requires populating channels symmetrically across both CPUs. This configuration ensures all 16 memory channels are utilized, maximizing memory bandwidth, a key factor discussed in Memory Subsystem Optimization. The use of DDR5 provides significant gains in bandwidth over previous generations, as documented in DDR5 Technology Adoption.
1.3. Storage Architecture
The storage subsystem emphasizes NVMe performance for primary workloads while retaining SAS/SATA capability for bulk or archival storage. The system is configured in a 2U rackmount form factor.
Slot/Type | Quantity | Capacity per Unit | Interface | Purpose |
---|---|---|---|---|
NVMe U.2 (PCIe Gen 5 x4) | 8 Drives | 3.84 TB | PCIe 5.0 | Operating System, Database Logs, High-IOPS Caching |
SAS/SATA SSD (2.5") | 4 Drives | 7.68 TB | SAS 12Gb/s | Secondary Data Storage, Virtual Machine Images |
Total Usable Storage (Raw) | N/A | Approximately 55 TB | N/A | N/A |
The primary OS boot volume is often configured on a dedicated, mirrored pair of small-form-factor M.2 NVMe drives housed internally on the motherboard, separate from the main drive bays, to prevent host OS activity from impacting primary application storage performance. Further details on RAID implementation can be found in Enterprise Storage RAID Standards.
1.4. Networking and I/O Capabilities
High-speed, low-latency networking is paramount for this configuration, which is often deployed as a core service node.
Component | Specification | Quantity |
---|---|---|
Primary Network Interface (LOM) | 2 x 25 Gigabit Ethernet (25GbE) | 1 (Integrated) |
Expansion Slot (PCIe Gen 5 x16) | 100GbE Quad-Port Adapter (e.g., Mellanox ConnectX-7) | Up to 4 slots available |
Total PCIe Lanes Available | 128 Lanes (64 per CPU) | N/A |
Management Interface (BMC) | Dedicated 1GbE Port (IPMI/Redfish) | 1 |
The transition to PCIe Gen 5 is crucial, as it doubles the bandwidth available to peripherals compared to Gen 4, accommodating high-speed networking cards and accelerators without introducing I/O bottlenecks. PCIe Topology and Lane Allocation provides a deeper dive into bus limitations.
1.5. Power and Physical Attributes
The system is housed in a standard 2U chassis, designed for high-density rack deployments.
Parameter | Value |
---|---|
Form Factor | 2U Rackmount |
Dimensions (W x D x H) | 437mm x 870mm x 87.9mm |
Power Supplies (PSU) | 2 x 2000W Titanium Level (Redundant, Hot-Swappable) |
Typical Power Draw (Peak Load) | ~1100W - 1350W |
Cooling Strategy | High-Static-Pressure, Variable-Speed Fans (N+1 Redundancy) |
The Titanium-rated PSUs ensure maximum energy efficiency (96% efficiency at 50% load), reducing operational expenditure (OPEX) related to power consumption and cooling overhead.
2. Performance Characteristics
The Template:PageHeader configuration is engineered for predictable, high-throughput performance across mixed workloads. Its performance profile is characterized by high concurrency capabilities driven by the 112 physical cores and massive memory subsystem bandwidth.
2.1. Synthetic Benchmarks
Synthetic benchmarks help quantify the raw processing capability of the platform relative to its design goals.
2.1.1. Compute Performance (SPECrate 2017 Integer)
SPECrate measures the system's ability to execute multiple parallel tasks simultaneously, directly reflecting suitability for virtualization hosts and large-scale batch processing.
Metric | Result | Comparison Baseline (Previous Gen) |
---|---|---|
SPECrate_2017_int_base | ~1500 | +45% Improvement |
SPECrate_2017_int_peak | ~1750 | +50% Improvement |
These results demonstrate a significant generational leap, primarily due to the increased core count and the efficiency improvements of the platform's microarchitecture. See CPU Microarchitecture Analysis for details on IPC gains.
2.1.2. Memory Bandwidth and Latency
Memory performance is validated using tools like STREAM benchmarks.
Metric | Result (GB/s) | Theoretical Maximum (Estimated) |
---|---|---|
Triad Bandwidth | ~780 GB/s | 850 GB/s |
Latency (First Access) | ~85 ns | N/A |
The measured Triad bandwidth approaches 92% of the theoretical maximum, indicating excellent memory controller utilization and minimal contention across the UPI/Infinity Fabric links. Low latency is critical for transactional workloads, as elaborated in Latency vs. Throughput Trade-offs.
2.2. Workload Simulation Results
Real-world performance is assessed using industry-standard workload simulations targeting key enterprise applications.
2.2.1. Database Transaction Processing (OLTP)
Using a simulation modeled after TPC-C benchmarks, the system excels due to its fast I/O subsystem and high core count for managing concurrent connections.
- **Result:** Sustained 1.2 Million Transactions Per Minute (TPM) at 99% service level agreement (SLA).
- **Bottleneck Analysis:** At peak saturation (above 1.3M TPM), the bottleneck shifts from CPU compute cycles to the NVMe array's sustained write IOPS capability, highlighting the importance of the Storage Tiering Strategy.
2.2.2. Virtualization Density
When configured as a hypervisor host (e.g., running VMware ESXi or KVM), the system's performance is measured by the number of virtual machines (VMs) it can support while maintaining mandated minimum performance guarantees.
- **Configuration:** 100 VMs, each allocated 4 vCPUs and 8 GB RAM.
- **Performance:** 98% of VMs maintained <5ms response time under moderate load.
- **Key Factor:** The high core-to-thread ratio (1:2) allows for efficient oversubscription, though best practices still recommend careful vCPU allocation relative to physical cores, as discussed in CPU Oversubscription Management.
2.3. Thermal Throttling Behavior
Under sustained, 100% utilization across all 112 cores for periods exceeding 30 minutes, the system demonstrates robust thermal management.
- **Observation:** Clock speeds stabilize at an all-core frequency of 2.9 GHz (approximately 500 MHz below the single-core turbo boost).
- **Conclusion:** The 2000W Titanium PSUs provide ample headroom, and the chassis cooling solution prevents thermal throttling below the optimized sustained operating frequency, ensuring predictable long-term performance. This robustness is crucial for continuous integration/continuous deployment (CI/CD) pipelines.
3. Recommended Use Cases
The Template:PageHeader configuration is intentionally versatile, but its strengths are maximized in environments requiring high concurrency, substantial memory resources, and rapid data access.
3.1. Tier-0 and Tier-1 Database Hosting
This server is ideally suited for hosting critical relational databases (e.g., Oracle RAC, Microsoft SQL Server Enterprise) or high-throughput NoSQL stores (e.g., Cassandra, MongoDB).
- **Reasoning:** The combination of high core count (for query parallelism), 1TB of high-speed DDR5 RAM (for caching frequently accessed data structures), and ultra-fast PCIe Gen 5 NVMe storage (for transaction logs and rapid reads) minimizes I/O wait times, which is the primary performance limiter in database operations. Detailed guidelines for database configuration are available in Database Server Tuning Guides.
3.2. High-Density Virtualization and Cloud Infrastructure
As a foundational hypervisor host, this configuration supports hundreds of virtual machines or dozens of large container orchestration nodes (Kubernetes).
- **Benefit:** The 112 physical cores allow administrators to allocate resources efficiently while maintaining performance isolation between tenants or applications. The large memory capacity supports memory-intensive guest operating systems or large memory allocations necessary for in-memory data grids.
3.3. High-Performance Computing (HPC) Workloads
For specific HPC tasks that are moderately parallelized but extremely sensitive to memory latency (e.g., CFD simulations, specific Monte Carlo methods), this platform offers a strong balance.
- **Note:** While GPU acceleration is superior for highly parallelized matrix operations (e.g., deep learning), this configuration excels in CPU-bound parallel tasks where the memory subsystem bandwidth is the limiting factor. Integration with external Accelerated Computing Units is recommended for GPU-heavy tasks.
3.4. Enterprise Application Servers and Middleware
Hosting large Java Virtual Machine (JVM) application servers, Enterprise Service Buses (ESB), or large-scale caching layers (e.g., Redis clusters requiring significant heap space).
- The large L3 cache and high memory capacity ensure that application threads remain active within fast cache levels, reducing the need to constantly traverse the memory bus. This is critical for maintaining low response times for user-facing applications.
4. Comparison with Similar Configurations
To understand the value proposition of the Template:PageHeader, it is essential to compare it against two common alternatives: a legacy high-core count system (e.g., previous generation dual-socket) and a single-socket, higher-TDP configuration.
4.1. Comparison Matrix
Feature | Template:PageHeader (Current) | Legacy Dual-Socket (Gen 3 Xeon) | Single-Socket High-Core (Current Gen) |
---|---|---|---|
Physical Cores (Total) | 112 Cores | 80 Cores | 96 Cores |
Max RAM Capacity | 1 TB (DDR5) | 512 GB (DDR4) | 2 TB (DDR5) |
PCIe Generation | Gen 5.0 | Gen 3.0 | Gen 5.0 |
Power Efficiency (Perf/Watt) | High (New Microarchitecture) | Medium | Very High |
Scalability Potential | Excellent (Two robust sockets) | Good | Limited (Single point of failure) |
Cost Index (Relative) | 1.0x | 0.6x | 0.8x |
4.2. Analysis of Comparison Points
- 4.2.1. Versus Legacy Dual-Socket
The Template:PageHeader offers a substantial 40% increase in core count and a 100% increase in memory capacity, coupled with a 100% increase in PCIe bandwidth (Gen 5 vs. Gen 3). While the legacy system might have a lower initial acquisition cost, the performance uplift per watt and per rack unit (RU) makes the modern configuration significantly more cost-effective over a typical 5-year lifecycle. The legacy system is constrained by slower DDR4 memory speeds and lower I/O throughput, making it unsuitable for modern storage arrays.
- 4.2.2. Versus Single-Socket High-Core
The single-socket configuration (e.g., a high-end EPYC) offers superior memory capacity (up to 2TB) and potentially higher thread density on a single processor. However, the Template:PageHeader's dual-socket design provides critical redundancy and superior interconnectivity for tightly coupled applications.
- **Redundancy:** In a single-socket system, the failure of the CPU or its integrated memory controller (IMC) brings down the entire host. The dual-socket design allows for graceful degradation if one CPU subsystem fails, assuming appropriate OS/hypervisor configuration (though performance will be halved).
- **Interconnect:** While single-socket designs have improved internal fabric speeds, the dedicated UPI links between two discrete CPUs in the Template:PageHeader often provide lower latency communication for certain inter-process communication (IPC) patterns between the two processor dies than non-NUMA aware software running on a monolithic die structure. This is a key consideration for highly optimized HPC codebases that rely on NUMA Architecture Principles.
5. Maintenance Considerations
Proper maintenance is essential to ensure the long-term reliability and performance consistency of the Template:PageHeader configuration, particularly given its high component density and power draw.
5.1. Firmware and BIOS Management
The complexity of modern server platforms necessitates rigorous firmware control.
- **BIOS/UEFI:** Must be kept current to ensure optimal power state management (C-states/P-states) and to apply critical microcode updates addressing security vulnerabilities (e.g., Spectre/Meltdown variants). Regular auditing against the vendor's recommended baseline is mandatory.
- **BMC (Baseboard Management Controller):** The BMC firmware must be updated in tandem with the BIOS. The BMC handles remote management, power monitoring, and hardware event logging. Failure to update the BMC can lead to inaccurate thermal reporting or loss of remote control capabilities, violating Data Center Remote Access Protocols.
5.2. Cooling and Environmental Requirements
Due to the 250W TDP CPUs and the high-efficiency PSUs, the system generates significant localized heat.
- **Rack Density:** When deploying multiple Template:PageHeader units in a single rack, administrators must adhere strictly to the maximum permitted thermal output per rack (typically 10kW to 15kW for standard cold-aisle containment).
- **Airflow:** The 2U chassis relies on high-static-pressure fans pulling air from the front. Obstructions in the front bezel or inadequate cold aisle pressure will immediately trigger fan speed increases, leading to higher acoustic output and increased power draw without necessarily improving cooling efficiency. Server Airflow Management standards must be followed.
5.3. Power Redundancy and Capacity Planning
The dual 2000W Titanium PSUs require a robust power infrastructure.
- **A/B Feeds:** Both PSUs must be connected to independent A and B power feeds (A/B power distribution) to ensure resilience against circuit failure.
- **Capacity Calculation:** When calculating required power capacity for a deployment, system administrators must use the "Peak Power Draw" figure (~1350W) plus a 20% buffer for unanticipated turbo boosts or system initialization surges. Relying solely on the idle power draw estimate will lead to tripped breakers under load. Refer to Data Center Power Budgeting for detailed formulas.
5.4. NVMe Drive Lifecycle Management
The high-speed NVMe drives, especially those used for database transaction logs, will experience significant write wear.
- **Monitoring:** SMART data (specifically the "Media Wearout Indicator") must be monitored daily via the BMC interface or centralized monitoring tools.
- **Replacement Policy:** Drives should be proactively replaced when their remaining endurance drops below 15% of the factory specification, rather than waiting for a failure event. This prevents unplanned downtime associated with catastrophic drive failure, which can impose significant data recovery overhead, as detailed in Data Recovery Procedures. The use of ZFS or similar robust file systems is recommended to mitigate single-drive failures, as discussed in Advanced Filesystem Topologies.
5.5. Operating System Tuning (NUMA Awareness)
Because this is a dual-socket NUMA system, the operating system scheduler and application processes must be aware of the Non-Uniform Memory Access (NUMA) topology to achieve peak performance.
- **Binding:** Critical applications (like large database instances) should be explicitly bound to the CPU cores and memory pools belonging to a single socket whenever possible. If the application must span both sockets, ensure it is configured to minimize cross-socket memory access, which incurs significant latency penalties (up to 3x slower than local access). For more information on optimizing application placement, consult NUMA Application Affinity.
The overall maintenance profile of the Template:PageHeader balances advanced technology integration with standardized enterprise serviceability, ensuring a high Mean Time Between Failures (MTBF) when managed according to these guidelines.
Intel-Based Server Configurations
Configuration | Specifications | Benchmark |
---|---|---|
Core i7-6700K/7700 Server | 64 GB DDR4, NVMe SSD 2 x 512 GB | CPU Benchmark: 8046 |
Core i7-8700 Server | 64 GB DDR4, NVMe SSD 2x1 TB | CPU Benchmark: 13124 |
Core i9-9900K Server | 128 GB DDR4, NVMe SSD 2 x 1 TB | CPU Benchmark: 49969 |
Core i9-13900 Server (64GB) | 64 GB RAM, 2x2 TB NVMe SSD | |
Core i9-13900 Server (128GB) | 128 GB RAM, 2x2 TB NVMe SSD | |
Core i5-13500 Server (64GB) | 64 GB RAM, 2x500 GB NVMe SSD | |
Core i5-13500 Server (128GB) | 128 GB RAM, 2x500 GB NVMe SSD | |
Core i5-13500 Workstation | 64 GB DDR5 RAM, 2 NVMe SSD, NVIDIA RTX 4000 |
AMD-Based Server Configurations
Configuration | Specifications | Benchmark |
---|---|---|
Ryzen 5 3600 Server | 64 GB RAM, 2x480 GB NVMe | CPU Benchmark: 17849 |
Ryzen 7 7700 Server | 64 GB DDR5 RAM, 2x1 TB NVMe | CPU Benchmark: 35224 |
Ryzen 9 5950X Server | 128 GB RAM, 2x4 TB NVMe | CPU Benchmark: 46045 |
Ryzen 9 7950X Server | 128 GB DDR5 ECC, 2x2 TB NVMe | CPU Benchmark: 63561 |
EPYC 7502P Server (128GB/1TB) | 128 GB RAM, 1 TB NVMe | CPU Benchmark: 48021 |
EPYC 7502P Server (128GB/2TB) | 128 GB RAM, 2 TB NVMe | CPU Benchmark: 48021 |
EPYC 7502P Server (128GB/4TB) | 128 GB RAM, 2x2 TB NVMe | CPU Benchmark: 48021 |
EPYC 7502P Server (256GB/1TB) | 256 GB RAM, 1 TB NVMe | CPU Benchmark: 48021 |
EPYC 7502P Server (256GB/4TB) | 256 GB RAM, 2x2 TB NVMe | CPU Benchmark: 48021 |
EPYC 9454P Server | 256 GB RAM, 2x2 TB NVMe |
Order Your Dedicated Server
Configure and order your ideal server configuration
Need Assistance?
- Telegram: @powervps Servers at a discounted price
⚠️ *Note: All benchmark scores are approximate and may vary based on configuration. Server availability subject to stock.* ⚠️
Overview
This document details the technical specifications, performance characteristics, recommended use cases, comparisons, and maintenance considerations for our “Cloud Resource Allocation” server configuration. This configuration is designed to provide a balance of compute, memory, and storage for a wide variety of cloud workloads, prioritizing cost-effectiveness and scalability. It’s a foundational offering within our cloud infrastructure, and understanding its capabilities is crucial for effective resource utilization and application deployment. This documentation is intended for system administrators, DevOps engineers, and cloud architects. Refer to Resource Provisioning Guide for details on how to request this configuration.
1. Hardware Specifications
The "Cloud Resource Allocation" configuration is built upon a standardized hardware platform to ensure consistency and manageability. The following table details the key components:
Component | Specification | Details |
---|---|---|
CPU | AMD EPYC 7443P | 24 Cores / 48 Threads, Base Clock: 2.8 GHz, Boost Clock: 3.7 GHz, TDP: 240W. Supports AVX2 instruction set. |
RAM | 128 GB DDR4 ECC Registered | 3200 MHz, 8 x 16 GB DIMMs. Utilizes Dual In-line Memory Module (DIMM) technology for optimal performance. Capacity can be expanded to 512GB with additional DIMMs (see Memory Expansion Options). |
Storage (Primary) | 1 TB NVMe SSD | Samsung PM9A1, PCIe Gen4 x4, Read: 7000 MB/s, Write: 5000 MB/s. Used for operating system and application installation. See Storage Tiering for details on different storage options. |
Storage (Secondary) | 4 TB SATA HDD | Western Digital Ultrastar DC HC550, 7200 RPM, 256MB Cache. Used for data storage and backups. RAID 1 configuration implemented for redundancy (see RAID Configuration). |
Network Interface | 2 x 10 Gigabit Ethernet | Intel X710-DA4, Supports Virtual Extensible LAN (VXLAN) and Open vSwitch. Bonding supported for increased bandwidth and redundancy. |
Motherboard | Supermicro X12SPM-F | Supports dual AMD EPYC 7002/7003 Series Processors, 16 x DIMM slots, multiple PCIe slots. Detailed specifications available in Motherboard Documentation. |
Power Supply | 800W Redundant Power Supply | 80+ Platinum certified. Provides power redundancy to prevent downtime. See Power Redundancy for more information. |
Chassis | 2U Rackmount Server | Standard 2U form factor for efficient rack space utilization. Designed for optimal Airflow Management. |
Remote Management | IPMI 2.0 with Dedicated LAN | Allows remote control and monitoring of the server, even when the operating system is down. See IPMI Configuration. |
Note: Specifications are subject to change based on component availability. Refer to the Hardware Revision History for the latest updates.
2. Performance Characteristics
The "Cloud Resource Allocation" configuration delivers consistently high performance for a broad range of workloads. We have conducted extensive benchmarking to quantify its capabilities.
CPU Performance
- SPEC CPU 2017:** The server achieves a SPECrate2017_fp_base score of 280 and a SPECrate2017_int_base score of 450. These scores are indicative of excellent performance in both floating-point and integer workloads. See SPEC CPU Benchmarking for details on the benchmark methodology.
- Passmark CPU Mark:** 22,500 (average score across multiple runs).
- Real-world Application Performance:** Compilation times for large software projects (e.g., Linux kernel) are reduced by approximately 30% compared to previous generation hardware.
Memory Performance
- Memory Bandwidth:** Measured at 89.6 GB/s using the STREAM benchmark. This high bandwidth ensures efficient data access for memory-intensive applications. Refer to Memory Performance Optimization for techniques to maximize memory utilization.
- Latency:** Average DRAM latency is measured at 75ns.
Storage Performance
- NVMe SSD (Sequential Read):** 6800 MB/s (average).
- NVMe SSD (Sequential Write):** 4800 MB/s (average).
- SATA HDD (Sequential Read):** 220 MB/s (average).
- SATA HDD (Sequential Write):** 200 MB/s (average).
- IOPS (NVMe):** 500,000 IOPS (4KB random read/write).
- IOPS (SATA):** 150 IOPS (4KB random read/write).
Network Performance
- Throughput:** Up to 20 Gbps aggregate throughput with both 10 Gigabit Ethernet interfaces utilized in bonding mode.
- Latency:** Average network latency within the data center is less than 1ms. See Network Latency Analysis for detailed latency measurements.
Virtualization Performance
When running as a hypervisor host (using KVM or VMware ESXi – see Virtualization Platforms), the configuration can comfortably support up to 20 virtual machines, each with 4 vCPUs and 8 GB of RAM, without significant performance degradation. The actual number of supported VMs depends on the specific workload and resource allocation.
3. Recommended Use Cases
The “Cloud Resource Allocation” configuration is ideal for the following use cases:
- **Web Servers:** Handles moderate to high traffic websites and web applications effectively. Consider using a load balancer (see Load Balancing Techniques) for optimal performance and availability.
- **Application Servers:** Suitable for running various application servers, such as Java, Python, and Node.js applications.
- **Database Servers (Small to Medium Scale):** Supports databases such as MySQL, PostgreSQL, and MongoDB for smaller to medium-sized datasets. For larger datasets, consider the High-Performance Database Configuration.
- **Development and Testing Environments:** Provides a robust and reliable platform for developers and testers.
- **CI/CD Pipelines:** Ideal for running continuous integration and continuous delivery pipelines.
- **Virtual Desktop Infrastructure (VDI):** Supports a moderate number of virtual desktops.
- **Containerization Platforms:** Excellent performance for running containerized applications using Docker or Kubernetes (see Container Orchestration).
- **Small to Medium Business Applications:** Suited for hosting a variety of business applications, such as CRM, ERP, and accounting software.
4. Comparison with Similar Configurations
The following table compares the “Cloud Resource Allocation” configuration with two similar offerings: “Cloud Compute Basic” and “Cloud Resource Advanced.”
Feature | Cloud Compute Basic | Cloud Resource Allocation | Cloud Resource Advanced |
---|---|---|---|
CPU | AMD EPYC 7302P (16 Cores) | AMD EPYC 7443P (24 Cores) | AMD EPYC 7763 (64 Cores) |
RAM | 64 GB DDR4 | 128 GB DDR4 | 256 GB DDR4 |
Primary Storage | 500 GB NVMe SSD | 1 TB NVMe SSD | 2 TB NVMe SSD |
Secondary Storage | 2 TB SATA HDD (Single Drive) | 4 TB SATA HDD (RAID 1) | 8 TB SATA HDD (RAID 5) |
Network Interface | 1 x 1 Gigabit Ethernet | 2 x 10 Gigabit Ethernet | 2 x 25 Gigabit Ethernet |
Price (Monthly) | $200 | $400 | $800 |
Ideal Use Case | Basic web hosting, small databases | General-purpose cloud workloads, application servers | High-performance computing, large databases, demanding applications |
Note: Pricing is approximate and may vary depending on region and contract terms. See Cloud Pricing Structure for detailed pricing information. The “Cloud Compute Basic” configuration is more cost-effective for less demanding workloads, while the “Cloud Resource Advanced” configuration provides significantly higher performance for resource-intensive applications. Consider Cost Optimization Strategies to choose the most appropriate configuration for your needs.
5. Maintenance Considerations
Maintaining the "Cloud Resource Allocation" configuration requires careful attention to cooling, power, and hardware monitoring.
Cooling
- The server is designed for operation in a climate-controlled data center environment.
- Maintain ambient temperature between 20°C and 25°C (68°F and 77°F).
- Ensure adequate airflow around the server chassis. Follow the guidelines in Data Center Cooling Best Practices.
- Regularly check and clean air filters to prevent dust buildup.
Power Requirements
- The server requires a dedicated 208V power circuit with a minimum of 20 amps.
- The power supply is redundant, but it is essential to connect both power supplies to separate power circuits for full redundancy. See Power Distribution Units (PDUs) for details on power distribution in the data center.
- Monitor power consumption using the IPMI interface or a dedicated power monitoring system.
Hardware Monitoring
- Utilize the IPMI interface to monitor server health, including CPU temperature, fan speed, and power supply status. Configure alerts to notify administrators of potential issues. See Server Monitoring Tools.
- Regularly check system logs for errors and warnings.
- Perform periodic hardware diagnostics to identify potential failures before they occur.
- Implement a proactive hardware replacement cycle to minimize downtime. Refer to Hardware Lifecycle Management.
Software Updates
- Keep the server’s BIOS, firmware, and operating system up-to-date with the latest security patches and bug fixes. See Patch Management Policy.
- Regularly update drivers for all hardware components.
Disaster Recovery
- Implement a robust backup and disaster recovery plan to protect against data loss and downtime. See Disaster Recovery Planning.
- Regularly test the disaster recovery plan to ensure its effectiveness.
End of Life Considerations
- Plan for hardware replacement based on the expected lifespan of the components. The EOL policy is documented in Hardware End-of-Life Policy.
- Ensure data migration strategies are in place before decommissioning any server.
Related Topics
- Cloud Infrastructure Architecture
- Server Virtualization
- Storage Solutions
- Network Configuration
- Security Best Practices
- Operating System Selection
- Monitoring and Alerting
- Automation and Orchestration
- Resource Scaling
- Cost Management
- Data Backup and Recovery
- Performance Tuning
- Troubleshooting Guide
- Hardware Revision History
- Service Level Agreements (SLAs)
```
Intel-Based Server Configurations
Configuration | Specifications | Benchmark |
---|---|---|
Core i7-6700K/7700 Server | 64 GB DDR4, NVMe SSD 2 x 512 GB | CPU Benchmark: 8046 |
Core i7-8700 Server | 64 GB DDR4, NVMe SSD 2x1 TB | CPU Benchmark: 13124 |
Core i9-9900K Server | 128 GB DDR4, NVMe SSD 2 x 1 TB | CPU Benchmark: 49969 |
Core i9-13900 Server (64GB) | 64 GB RAM, 2x2 TB NVMe SSD | |
Core i9-13900 Server (128GB) | 128 GB RAM, 2x2 TB NVMe SSD | |
Core i5-13500 Server (64GB) | 64 GB RAM, 2x500 GB NVMe SSD | |
Core i5-13500 Server (128GB) | 128 GB RAM, 2x500 GB NVMe SSD | |
Core i5-13500 Workstation | 64 GB DDR5 RAM, 2 NVMe SSD, NVIDIA RTX 4000 |
AMD-Based Server Configurations
Configuration | Specifications | Benchmark |
---|---|---|
Ryzen 5 3600 Server | 64 GB RAM, 2x480 GB NVMe | CPU Benchmark: 17849 |
Ryzen 7 7700 Server | 64 GB DDR5 RAM, 2x1 TB NVMe | CPU Benchmark: 35224 |
Ryzen 9 5950X Server | 128 GB RAM, 2x4 TB NVMe | CPU Benchmark: 46045 |
Ryzen 9 7950X Server | 128 GB DDR5 ECC, 2x2 TB NVMe | CPU Benchmark: 63561 |
EPYC 7502P Server (128GB/1TB) | 128 GB RAM, 1 TB NVMe | CPU Benchmark: 48021 |
EPYC 7502P Server (128GB/2TB) | 128 GB RAM, 2 TB NVMe | CPU Benchmark: 48021 |
EPYC 7502P Server (128GB/4TB) | 128 GB RAM, 2x2 TB NVMe | CPU Benchmark: 48021 |
EPYC 7502P Server (256GB/1TB) | 256 GB RAM, 1 TB NVMe | CPU Benchmark: 48021 |
EPYC 7502P Server (256GB/4TB) | 256 GB RAM, 2x2 TB NVMe | CPU Benchmark: 48021 |
EPYC 9454P Server | 256 GB RAM, 2x2 TB NVMe |
Order Your Dedicated Server
Configure and order your ideal server configuration
Need Assistance?
- Telegram: @powervps Servers at a discounted price
⚠️ *Note: All benchmark scores are approximate and may vary based on configuration. Server availability subject to stock.* ⚠️